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A. 1. Introduction

Efficient scientific progress may be achieved by ratcheting detailed field
observations with careful theoretical analysis. We cannot solve geologic problems by
burying ourselves in a profusion of data, nor by immersing ourselves in the minutiae of
analysis and computation. Observations are incomplete perceptions of physical reality, but
they are the test of the conceptual models we develop. The models are based upon simple
assumptions about the behavior of physical reality. It is the interplay between the testing
and refinement of models and the focusing of our repeated observations that builds the
scientific intuition needed to solve geologic problems (Margenau [1950] and D. D.
Pollard, personal and written communications, 1989-1994).

This appendix illustrates the numerical solution of a simple deterministic problem of
topographic profile development under specific initial and boundary conditions, and a slope
dependent constitutive material transport law. Elevation change with time is determined by
the solution of the continuity equation for material transport [Carson and Kirkby, 1972;
Kirkby, 1971]. Because the main governing equation is analogous to the heat conduction
or chemical diffusion equation, this type of analysis has been called "diffusion erosion."

A variety of solution techniques are developed and investigated. A FORTRAN
computer program, DIFFUSE, is provided and documented. Numerical experimentation
demonstrates that a consistent set of assumptions will provide a possible explanation for
observed forms and distributions [Kirkby et al., 1993]. While many slope profiles can be
simulated, it is up to the user to go out and make the observations to ratchet this
investigation and his or her intuition further. Hopefully, a careful reading of this document
and some numerical experiments with DIFFUSE will indicate a profitable path for field
investigation.

A.1.1. About this document

This document is designed to discuss the essential aspects of the numerical
determination of elevation change along profiles under "diffusion erosion” conditions.
First, the numerical method of finite differences is described (Section A.2). The conditions
of "diffusion erosion" are defined next and two finite difference techniques presented
(Section A.3). A more precise solution is presented in Section A.4 in which the actual
slope length over which material transport changes is explicitly considered, instead of its
approximation as horizontal length. Section A.5 is a user's guide for DIFFUSE that

discusses how to get the program, compile it, and run it; and input and output.
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A.2. Numerical method--finite difference basics
A.2.1. Numerical solutions
While many analytic solutions are relatively easy to calculate, they depend on
regular initial shapes and are not as flexible as numerical solutions. We use the technique
of finite differences to approximate various equations in our analysis.
A.2.2. Finite differences background
Most of the following discussion is based upon Chapra and Canale [1988]; and
Ferziger [1981]. Finite difference approximations for functions are based upon the Taylor

Series approximation of a function at a point:
F(xien) = F0a)+ 1 (x) (a1 =) + (%)(xm -x) (A2.1)
Sy (%)(xm —x) ot f (")(%)(xm - x;)" +Ry

where Ry, is a remainder term for terms (n+1) to infinity, and f(x;) is the first derivative at

x;. Truncated after the first derivative, (A.2.1) becomes

Flxi) = () + F ()% — %) (A.2.2)
Solving for f'(x;) produces
oy fa) - f(a) R (A2.3)
d (xl) (xf+1 - %) (xis1— x;)

(1st order approximation - truncation error)
Then let & = (x;+] - x;) [step size), and Af = f{x;+1) - fix;) [first forward difference], so that

the finite divided difference is
f (x,-)=—Ahi—O(h) (A2.4)

The above is the forward difference, but we may also have backward and central
differences (Figure A.1); Centered difference approximation for 1st derivative:

2
Subtract Flxi1)= F() = £ (% )n+ £ &2_| _ (A.2.5)
(backward difference)
2
from Flxin) = F(x)+ £ (x)h+ £ % ‘. (A.2.6)
(forward difference)
3
to y161d f(xi+l)=f(xi—1)+2f (x[)h+f"%+... (A.2.7)

S(%i41) = f(xiz1) N f"'(xf)hz ' (A.2.8a)
6

and solve for f'(x;)= m
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or f (xi) - f(xi+1 )Z_hf(xi_l) 3 th (A.2.8b)

Equation A.2.8b is the centered or central difference representation of the first derivative.

Notice that it is second order accurate.
A.2.2.1. Finite difference approximations of higher order derivatives
First, write a forward Taylor Series approximation of f(xj+2) in terms of f(x;):

f(xiv2) = () + £ () 2m) + £ (x )(2;,2) (A.2.9)
Multiply (A.2.6) by 2 and subtract from (A.2.9) to yield

F(xi2) = 2f(xi41) =—f () + 1 i )(2;,2) (A.2.10)
Which is solved for

£ (%)= S i) =2 (xia )+ (1) _ Oh (A.2.11)

h2
This relationship is called the second forward finite divided difference. Similar
manipulations can be employed to derive a backward version

() = f (i)~ 2)"():-51 )+ f(xi-2) g, (A.2.12)

and a centered version
m S(xig1) = 26 (%) + fxi- A.2.13
f (xi)= ( l) h(2 ) (x l) th ( )

As was the case with the 1st order approximations, the centered version is more accurate.
Also notice that the centered version can alternatively be expressed as
F(ripn) = f(xi) ()= f(xim1) (A2.14)

(=)= h h h - 0K’

Thus, just as the second derivative is the derivative of a derivative, the second divided

difference approximation is a difference of two first divided differences.
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A.3. Diffusion erosion

Many approaches to the modeling of hillslope degradation governed by so-called
diffusive processes are based upon the following derivation. The determination of the
vertical component geomorphic displacement (erosion or deposition) is based upon the
assumption of continuity of transportation of debris along the profile and is commonly
referred to as the "continuity equation" (for example, [Carson and Kirkby, 1972; Kirkby,
1971]). In other words, in a given time increment At, the change in material per unit width
contained along a slope segment (AQ) is the difference between that which is supplied from
above (Q4) and that which is removed from below (Qg)--note that Q, the material transport
rate per unit width, has dimensions of [L2T-1]:

Or— 04 =40 (A3.1)

Taking the limit in (A.3.1) and assuming transport-limited conditions and no tectonic

vertical displacements leads to the relation that the change in elevation with time (=) 1s

ot

determined by the change in Q over the slope length:
a_PI. = a_Q (A'3 '2)
ot s

where ds is the change in slope length. H is the elevation of the topographic surface, and is
not an independent variable in this analysis. It is dependent upon ¢, time, and x, the
distance along the slope profile. The negative sign reflects the fact that a positive change in
material transport rate corresponds to a positive change in elevation. See Figure A.2 for an
illustration of the profile geometry. (A.3.2) is simplified by approximating ds with dx, the
horizontal distance:

oH 90

i Continuity Equation (A.3.3)
The assumption of ds ~ dx will result in an overprediction of geomorphic displacement rate
(because dx < ds --in the denominator--for all but zero slope). However, the difference in
ds and dx is small for the low slopes (<45°) and therefore, the approximation is justified in
order to simplify our analysis (see Section A.4). Most of the derivatives in this analysis are
of functions of two more variables (e. g., A.3.2); therefore, the equations must include the

partial derivative form, and we assume that the other, undifferentiated variables are
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constant: this is appropriate in that rates of change are relative to particular dimensions and
might depend upon other variables.
A.3.1. Constitutive Equation
The continuity equation presented above includes the consideration of no processes-
-only the fact that a change in material transport rate over a given slope segment will result
in a change in elevation. We specify the rule for material transport as the following:

Q = _aa%x (A.3.4)

where o is a constant of proportionality, and the negative sign is necessary for positive transport
rate down a negative slope. This slope dependent law results from rainsplash, creep, thermal
expansion, and animal induced disturbances [Carson and Kirkby, 1972; Culling, 1963; Selby,
1985]. It does not allow for slope-length dependent processes (where Q is proportional to x), such
as overland flow [Carson and Kirkby, 1972]. Rainsplash impact can be as much as 256 times
more energetic than overland flow, and therefore must dominate the surficial processes [Carson
and Kirkby, 1972; Selby, 1982].

In the case of creep, Mitchell [1976] (as cited in Nash [1980]) showed that the shear strain
rate is proportional to shear stress for the low stresses acting on hillslope materials. The shear
stress in a slope is proportional to the sine of the slope angle:

Q=-oasinf (A.3.5)
where 0 is the slope angle measured down form the horizontal. Because typical slope
angles are less that 30°, sin 6 = tan 6 = dH/dx. Therefore, for small values of 6, (A.3.5)
and (A.3.4) are approximately equivalent.

Combining (A.3.2) and (A.3.4) results in the following differential equation for the

change in elevation with time:

88_1;1 - k%(aH ax) (true slope length case) (A.3.6)
Where k = o . If ds = dx (i.e., using (A.3.3) and f3 = I) then (A.3.6) is simplified as
2
A k ) I:I (linear diffusion case) (A.3.7)
ot ox

Where the vertical geomorphic displacement rate is proportional to the curvature of the
landscape. This analysis has been used in several geomorphic and tectonic applications
(e.g., [Avouac, 1993; Colman, 1987; Culling, 1963; Hanks and Andrews, 1989; Hanks et
al., 1984; Hirano, 1968; Nash, 1980; Nash, 1981]). A.3.7 is analogous to the heat
conduction equation (homogeneous linear diffusion equation) for one dimensional heat
transport in which k would be the coefficient of proportionality called the thermal
diffusivity and H would be temperature (e.g., Avouac, 1993; Hanks et al., 1984; Nash,
1980).
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A.3.2. Vertical scarp initial conditions
First, we will illustrate the analytic solutions to the simple, linear diffusion case (an
approach presented in Hanks et al. [1984]. A solution of the homogeneous diffusion
equation (A.3.7) for a step of topography of 2a at =0 and x =0 (e.g.,a newly formed
fault scarp, and note that the origin for x in this example is in the mid scarp and not at the
upper boundary; see Figure A.2 for the geometry of these model scarps) on a pre-existing
topographic slope of b is

H(x,?) =a-erf{2—%5:|+b x

in which H is elevation, x is the horizontal dimension, ¢ is time, and k is the erosive

(A.3.8)

diffusivity. The resulting profiles are not uniquely dependent on t or k, but rather their
product. For example, the same profile will result for k =1 m2/kaandt=10kaor k=10
m2/ka and ¢ = 1ka (T. C. Hanks personal communication and [Hanks et al., 1984]). For
this presentation, we have separated these values to emphasize the fact that a known value
for k or ¢ may be used to constrain the other. Figure A.3 shows the geometry of a simple
fault scarp and a graphical solution to (A.3.8) for a step of 2 m at time zero and a far field
or fan slope of 5°, and its subsequent degradation with time.

A.3.3. Ramp (finite) slope initial conditions

Equation (A.3.8) provided a solution of the homogeneous diffusion equation

(A.3.7) for a step of topography of 2a att = 0 and x = 0 (e.g., a newly formed fault scarp)
on a pre-existing topographic slope of b and an infinite slope (vertical) initial scarp slope
(Figures A.2 and A.4). Clearly, a vertical scarp will not last long, nor will "diffusive"
processes operate on such steep slopes. Therefore, it is important to develop the analysis
for finite initial slope scarps. Hanks and Andrews [1989] provided the following equation
for the same conditions that give rise to (A.3.7), then, except that the fault "occurs” on a
slope of 6 instead of oo, the solution to (A.3.7)is:

H(xt)=(6- b)(%)%

[x + a/(e — b)]z [x —a/(ﬂ _b)]Z
.{eXP[— Akt } i exp(— 1 }}
(6-b) ( ' (6- b)J ’f( [4kt)/2 ] (A.3.9)
) r+b-x

2
B P I x—af(0-b)
SR
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in which H is elevation, x is the horizontal dimension, ¢ is time, b is the far-field or fan
slope, and k is the erosive diffusivity. Figure A.3 shows the geometry of a simple fault
scarp, and a graphical solution to (A.3.9) for a step of 2 m at time zero, a far field or fan
slope of 5°, and an initial scarp slope of 45° and its subsequent degradation with time is

shown in Figure A.4.

A.3.4. Comments
Although the diffusive representation of erosion ignores the mechanics of sediment
particle motion, it adequately describes scarp degradation in non-dissecting alluvial terrains
over a wide range of scales (0 < 2a< 50 m, and 3 < age < 400 ka; e.g., [Hanks et al.,
1984; Nash, 1980]). That conservation of mass holds on a local scale is an important
assumption. This cannot be invoked for entrenched stream channels, and approaches are
presented elsewhere for that case. The results of diffusion erosion analyses depend
strongly on a well constrained value for the diffusion coefficient k.
A.3.5. Numerical solutions to the basic linear diffusion erosion
case
Here we present an explicit finite difference method for solving equation (A3.7)
for arbitrary initial conditions (see Figure A.5 for the temporal and spatial discretization
grid and computational molecule). First, approximate the time derivative (left hand side of
(A.3.7)) with a forward divided difference (A.2.4):
oH H' -H] (A.3.10)
P
where we have assumed no tectonic input and a transport-limited case (infinitely thick soil).
Secondly, approximate the space derivative by a centered divided finite difference (A.2.13):

O*H zk(Hf+I ~2H +H},) (A.3.11)
ox? Ax?
Substitute (A.3.10) and (A.3.11) into (A.3.7) to get
HY -H' ; (H.,, -2H, +H,,) (A.3.12)
At Ax?
Hil+1 = Hil i %t__(Hilﬂ - 2Hil i Hil—l)

H*' = H + A(H}, - 2H, + H],)

i+1

where A = %xA—; This equation is written for all interior nodes of the profile (Figure A.5).

It then provides an explicit means of computing values at each node for a future time, based
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Explanation of nodes:

@ interior node, elevation is determined by finite difference eqns.
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B Grid point involved
| | | X in time difference
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Figure A.5. A) Grid definition and geometry and node type definition. B) Computational
molecule for 1-D explicit finite difference method. C) Computational molecule for 1-D implicit

Crank-Nicholson Method.
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upon the present values. This explicit method is convergent and stable for A < %, or
At < lﬁ- [Ferziger, 1981].
2 k
A.3.5.1. An example application of the 1-D expilicit finite difference method
solved using a spreadsheet (Microsoft Excel)
Table A.1 is an example spreadsheet used to solve (A.3.7) by (A.3.12). The constants in
solid boxes are input, and the spreadsheet determines the rest.

TABLE A.1. Example Microsoft Excel Spreadsheet for explicit finite difference. The
values inside the bold boxes can be changed and the result plotted in a chart.

Constants: units
dx = 4 Im
dt = 0.05 Ika
k= 1 |m2fka
lambda = 0.003125
|Age = 5 ka
I (time)
0 0.05
X i (distance) 1 2
-10 0 1 1
-6 1 1 1
-2 2 1. 0.99375
2 3 -1 -0.99375
6 4 -1 -1
10 5 -1 -1
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Table A.2 is the same spreadsheet with the equivalent formulae for Table A.1. In order to
calculate to a given age, we must copy the D column to the right enough times to keep the
calculation stable. For example, to determine the profile shown in Figure A.6A, 100 time
steps, or 100 columns were used. For the given parameters such a result is well within the

stability criterion (unlike Figure A.6B; a nice example of an unstable solution).

TABLE A.2. Example Microsoft Excel Spreadsheet for explicit finite difference with
formulae shown.

Row #J Column A B C D
| (time)
=C43*dt-dt =D43*dt-dt
X i (distance) 1 2
44 =-10+B44*dx 0 1 =C44
45 =-10+B45*dx 1 1 =C45+lambda*(C46-
2*C45+C44)
46 =-10+B46*dx 2 1 =C46+lambda*(C47-
2*C46+C45)
47 =-10+B47*dx 3 -1 =C47+lambda*(C48-
2*C47+C46)
48 =-10+B48*dx 4 -1 =C48+lambda*(C49-
2*C48+CA47)
49 =-10+B49%dx 5 -1 =C49
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Figure A.6. Microsoft Excel plots showing the initial and final profiles determined using the
sample spreadsheet (Tables A.1 and A.2). A) Diffusion erosion solution for degraded step; 1-D
aMMﬂwmdemmedemmJ=5kak=1m4m.m Unstable diffusion erosion solution
for degraded step; 1-D explicit finite difference technique, t= 1000 ka, k=1 m2/ka (with a large A
= 0.625; exceeding the stability criterion).
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A.3.5.2. Sample computer code for numerical simulation of linear diffusion
In this section we present the sample routine that determines the changes in
elevation with time based upon (A.3.6). Note that this is a subroutine in the program
DIFFUSE (Section A.5). This type of explicit method is occasionally called an "Euler
method;" thus the name of the subroutine [Ferziger, 1981]. See Atkinson et al. [1989] or
Metcalf [1989] for references to programming in FORTRAN.

Definition of variables
nt is the number of times the program determines the change in
elevation as it goes through the main Do loop. This number depends
upon the value of the timestep dt, which is defined by the stability
1 Ax?
criterion At ———.

k

i is the space counter.

1l is the time counter.

data is the vector containing the elevations of all nodes both interior
and exterior. It is assumed that the elevation vector has been
initialized with the starting profile before this routine is called.
It is returned with the elevations of the degraded profile when the
routine finishes.

kAt
lambda = A= F— .

Subroutine euler (nx, size, data, nt, lambda)
C Calculates new elevation vector by explicit centered
C finite difference
C i --> Time counter
C 1 --> Space counter
C size --> Long dimension of vector
C temp --> Temporary elevation vector

integer i, 1, nt, nx, size

real data(size,2), temp(1001,2), lambda
C Calculate the change in elevation nt times

do 10 1=1,nt
© calculate the new elevations for this increment

do 20 i=2,nx
temp(i,2)=data(i,2)+lambda*

+ (data(i+1,2)-(2*data(i,2))+data(i-1,2))
20 continue
c Assign new elevation vector to elevation vector

do 30 i= 2,nx
data(i,2) = temp(i,2)

30 continue
10 continue

END
o end euler
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A.3.5.3. The Crank-Nicholson Method
The Crank-Nicholson method is an alternate implicit scheme that is second order
accurate in both space and time: the difference equations are developed for the middle of
the increment. It is also stable for larger values of A than the explicit method. This
example hints at the sophistication possible for some applications of finite differences. The

temporal first derivative of (A.3.7) is approximated at #+1/2 by
OH _H" ~H, (A3.13)
ot At
The spatial second detivative for the midpoint is determined by averaging the difference

approximations at # and #+! (Figure A.5):

(H (Hi - 28" + H}) - (H},, —2H] + H,) (A.3.14)
9x2 2Ax2
Substituting (A.3.13) and (A.3.14) into (A.3.7) and collecting terms gives
~AHT +2(14+ A)H[Y = AH = AH, +2(1+ A)H, + AH,,, (A.3.15)
where A = _kA_;‘
Ax

Boundary conditions of Hll+1 = fl(tl+l) and Hf,}'_l,_l = fnx+1(tl+l) can be prescribed to

derive equations for the first interior node (i = 2):

214 W) HE A =3 (1) + xfl(t”‘) +2(1-\)H} + AH} (A.3.16)
Which is simplified as
2(1+A)HEH - AHET = 20 (1) +2(1— A)Hj + AHS (A.3.17)

and for the last interior node (i = nx):
B + 214 A HE = ALy + 2014 M B + Mot () Mt (7)) (A3.18)
(the above equation is wrong in Chapra and Canale [1988]). (A.3.18)is simplified as

AHEL 204 M) HE = AHL g+ 2(14 M) Hpp + 20 1 (1) (A.3.19)
(A.3.15) can be written in algebraic notation as
HH*IM = rhs (A.3.20)

where H+! is the vector or elevations at time [+ (the unknown), M is the tridiagonal

matrix of the form:
node # in equation -> i=2 i=nx
node # of equation below

i=20201+0) |-A
-A 20040 |-
~A 21+4A) | -A

i=nx -A 2(1+A)
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and rhs is the vector of known elevations (H?) multiplied by the appropriate constants (A or
2(1-1), i.e., A.3.15). (A.3.20) is then solved for H!'*1 ysing a tridiagonal matrix solution
technique [Atkinson et al., 1989; Ferziger, 1981].
A.3.5.4. Sample computer code for 1-D Crank-Nicholson implicit finite
difference scheme
Tn this section we present the sample routine that determines the changes in elevation with
time based upon (A.3.15 and A.3.20). Note that this is a subroutine in the program
DIFFUSE (Section A.5). The subroutine vetx determines the value of the vector rhs
for the tridiagonal solution of (A.3.20):

Subroutine vctr (rhs, data, cnlambda, nx, size)

The subroutine vctr determines the value of the
vector rhs for the tridiagonal solution of the
matrix equation of the crank-nicholson scheme:

NnNao

integer nx, size
real data(size, 2), cnlambda, rhs(size)

(@]

update first interior node

rhs(1l) = 2*cnlambda*data(l,2)
+ + 2* (l-cnlambda) *data(2,2)
+ + cnlambda*data(3,2)

C update fully interior nodes
do 54 1i=3,nx-1
rhs(i-1) = cnlambda* (data(i-1,2)
+ + data(i+1,2))
+ + 2*(l-cnlambda) *data{i, 2)
54 continue

C update last interior node
rhs (nx-1) = cnlambda*data(nx-1,2)
+ + 2*(l-cnlambda) *data{nx, 2)
+ + 2*cnlambda*data (nx+1,2)

END
C end vctr
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The subroutine crank solves (A.3.15) constrained by initial and boundary conditions

and variables defined above by using a tridiagonal solver to return the final values of

data:

[P

oOoOnNOOoQnn

51

52

55
53

Subroutine crank (nx, size, data, k, dx, tf)

This subroutine determines the new elevations by using the
Crank-Nicholson implicit scheme.

i --> Time counter

1 --> Space counter

size --> Long dimension of vector

p --> Temporary elevation vector

cnlambda --> Crank-Nicholson lambda

ths --> Right-hand side vector of Crank-Nicholson equation
band --> Vector for upper and lower bands of tridiagonal matrix
main --> Main band of tridiagonal matrix

integer i, nt, 1, size
real data(size, 2), dx, k, tf, cnlambda, rhs (1001),
+ band(1001), main(1001), dt, p(1001)

Determine new cnlambda for greater stability of CN method
Determine a stable nt and dx. Note that the first dt
is provisional

dt (1* (ax**2))/k

nt int(tf/dt)+1

dt = tf/nt

cnlambda = (k*dt)/(dx**2)

print *, 'Crank-Nicholson nt =', nt
print *, 'Crank-Nicholson lambda =', cnlambda

Build bands for matrix
do 51 i=1,nx-2

band (i) = (-cnlambda)
continue

Build main band
do 52 i=1,nx-1

main(i) = 2*(1 + cnlambda)
continue

Calculate elevation change nt times
do 53 1=1,nt
call vetr (rhs, data, cnlambda, nx, size)
call trdiag (nx-1, band, main, band, p, rhs, size)
do 55 i=2,nx
data(i,2)=p(i-1)
continue
continue
END
end crank
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A.3.6. Verification of numerical techniques: Comparison with
analytic solutions
In order to verify the numerical techniques presented above, we compare the results

for several numerical simulations with the corresponding analytic solution with the same
initial and boundary conditions and values for the constants. Figure A.7 graphically
indicates our initial success with this numerical approximation. The small errors are typical
of the method [Ferziger, 1981] and the even smaller differences between the techniques are
overshadowed by the error caused by the infinite curvature of the initial condition (Ferziger
[1981] points out that the global error of the approximation of a function is proportional to
the second derivative of that function, so the first time step has a large error). The source
of the greatest error is probably the discretization of the initial profile in which the sharp
corner of the ramp may not coincide with a node and thus will be cut off. Another result to
note is that decreasing At (increasing n¢--the number of time steps) and increasing Ax

(decreasing nx--the number of space steps) diminish error (except that increasing Ax causes

. . , . kAt
the discretization error to increase). This error dependence results from A= F Clearly,

decreasing Ax makes A increase and thus promotes a divergent (unstable) solution

[Ferziger, 1981].
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Figure A.7. Residual error (analytic - numeric) for different numerical approximations to the
diffusion erosion problem with these parameters specified: k=1 m2/ka, b=5° 8=45° anda=1
m, and the final time is 1 ka. Note how the error decreases with both the technique (explicit or
Crank-Nicholson implicit--CNImplicit), and increasing number of timesteps (n); while increasing
the number space steps (nx) actually pushes the error up. Consider how D might plot in C and in
B, and that the errors are atbitrarily small (depend only on nt and nx) and acceptable. The results
are reported in terms of nx x nt. A) Graphical plot of solution. B) Comparison of error for explicit
method (100 x 100; largest error), CNImplicit (100 x 20; medium error) and CNImplicit (500 x 500;
least error). C) Blow-up of the least error in B: CNImplicit (500 x 500). D) Residual error for the
extreme example of Explicit (1000 x 10,000).
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A.4. Viability of the slope length = horizontal distance
approximation
In the previous section, we investigated the variety of possibilities available with the
linear diffusion case for erosion. Recall the equations:

%g = kg;(al‘l ax) (true slope length case) (A.4.1)
If ds = dx, then (A.4.1) is simplified as
2
o =k ) il (linear diffusion case) (A.4.2)
ot dx

The simplification of ds = dx is reasonable in that the angles over which these processes
occur are generally small. However, we may investigate this approximation further. First,
we evaluate the geometric consequences of this approximation.

The source of error results from the variation of ds as a function of dx and dH. In
other words, the change in mass transport (dQ) occurs over a constant ds, and that is not a
constant dx when projected onto the horizontal; rather it varies with dH (Figure A.8).

Therefore, the use of (A.4.2) incorporates an approximation, the effects of which
may cause an overprediction of elevation change with time because dQ/dx > dQ/ds. In

ds = \dx? + dH? (A.4.3)

and if we hold dx fixed, then ds will vary from a minimum of dx when dH = 0 to e as dH
increases. We can reformulate this in terms of the slope angle, 6 (slope angle measured

other words,

down from horizontal):

gs= (A.4.4)
cos©
As cos 0 varies from 1 to 0 as 6 varies from 0 to 90°, ds in terms of dx will vary from dx

to oo, indicating that only for dH = 0, will ds = dx, and (A.4.2) explicitly hold (Figure
A.8). However, for dH = 0, there would be no slope, and thus not material transport,

violating our assumption of constitutive behavior:
0=-ad/ . (A4.5)

For the case of 8 < 45° (typical of slope investigations in which the diffusive processes will
operate), the profile changes determined using (A.4.2) should indicate faster erosion than
for (A.4.1); however, the < 41% variation may not significantly effect the resulting profile
given the possible temporal and spatial sampling errors of real profiles.

Investigation of our hypothesis based upon the above analysis indicates that the
linear diffusion simplification will overestimate the material transport rate, and thus the
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Figure A.8. Effect of slope angle on ds/dx.
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erosion rate. Using the method of finite differences, then, we can quantitatively simulate
the development of profiles governed by (A.4.1) and (A.4.2). We will use the same
formulation for the approximation of (A.4.1) as was presented in Section A.3 for (A4.2).
The following is the formulation of the finite difference approximation of (A.4.1):
First, approximate the time derivative (left hand side of (A.4.1)) with a forward divided

difference (A.2.4);
oH _ H[*' - Hf (A.4.6)
ot At

where we have assumed no tectonic input and a transport-limited case (infinitely thick soil).
Secondly, approximate the space derivative by a centered divided finite difference (A.2.8):
J Q. -0 (A.4.7)
r _Q ~k i+l i-Y4 A
ds As
In (A.4.7), we have introduced imaginary nodes at i + 1/2, and will approximate the
material transport rate at those points based upon our assumption of the constitutive
equation (A.4.5):

Q'={E&:§J (A4.8)
i+) Ax

I Hif — Hf—l
Q“y2 _( Ax )

Now, we substitute (A.4.8) into (A.4.7):

( H|,—H] ]_ ( H -H ) (A.4.9)
ka_Q .k Ax Ax _ k[Hjﬂ —2H] + H;-I)
ds As Ax - As
Simplifying, collecting terms, and combining with (A.4.6):
H* =H'+ A’;AtAs (Hi'+1 —2H' +Hi’—1) (A.4.10)

Clearly, if Ax = As, (A.4.10) reduces to the explicit finite difference formulation for linear
diffusion (A.3.12). Finally, substitute finite difference version of (A.4.3) into (A.4.10) to
get our explicit finite difference approximation of (A.4.1):

H™ = H' + L (R, —2H! +HL) (A4.11)
Ax- \/(ZAX)Z + (Hil+1 - Hil—l )2

Note that we have approximated the slope length from nodes (i+1) to (i-1) for greater
accuracy. Figure A.9 shows the difference in the resulting profiles and indicates that the
approximation is probably warranted, especially for larger kt values (i.e., lower slopes and
ds -> dx).
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A.4.1.

In this section we present the sample routine that determines the changes in
elevation with time based upon (A.4.10). It is a subroutine of the program DIFFUSE

212

Sample computer code for numerical simulation of the
true slope length case

presented in Section A.5.

25

35
12

Subroutine eulerDs (nx, size, data, dt, k, dx, nt)

Calculates new elevation vector by explicit centered
difference, keeping track of true slope length, ds

integer i, 1, nt, nx, size
real data(size, 2), temp(1001, 2), k, dt, ds, dx

Calculate the change in elevation nt times
do 12 1=1,nt

calculate the new elevations for this increment
do 25 i=2,nx
ds = sqgrt{((2*dx)**2)+

+ (data(i+1,2)-data(i-1,2))**2)/2

temp(i,2)=data(i,2)+((dt*k)/ (dx*ds))*

+ (data(i+1,2)-(2*data(i,2))+data(i-1,2))
continue

Assign new elevation vector to elevation vector
do 35 i= 2,nx
data(i,2) = temp(i,2)
continue
continue
END
end eulerDs

A.5.1

A.5. DIFFUSE user's guide
Documentation

The FORTRAN 77 program, DIFFUSE, determines topographic profile
development of an arbitrary shaped initial profile, subject to constant elevation boundary
conditions, no tectonic elevation changes, and specified final time, rate constant (k), and

spatial step size. The temporal step size is determined automatically subject to the stability
criterion that A < 0.25. This criterion ensures that the results are stable--it is one-half the

explicit stability criterion defined by Ferziger [1981]. This section of the document should
help a user run DIFFUSE.
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Diffuse was developed from 1991-1994 using Mathematica for the Macintosh. In
August, 1994, it was translated to FORTRAN, and has successfully been compiled on
pangea (DEC5800), shiprock (Sun Sparc 2), and bishop (SGI Indigo 2 x1).

Please contact with questions, bugs, or to get a copy of the program:

Ramoén Arrowsmith

Department of Geological and Environmental Sciences
Leland Stanford Junior University

Stanford, CA 94305-2115

(415) 725-0573 office or (415) 497-4251 home

ramon @pangea.stanford.edu
ramon @keck.whittier.edu
DIFFUSE has only been tested on workstations operating under UNIX. To

compile the text source code titled diffuse. £, type the following at the machine

prompt:
pangea> f£77 -o DIFFUSE diffuse.f
That should provide an executable program called DIFFUSE.
A.5.1.1 Input

DIFFUSE operates by reading and writing from the standard input/output. Prepare
a properly formatted input file (in, see below), and type the following command using
UNIX redirects at the machine prompt to have the output written to the file out:
pangea> DIFFUSE <in >out

A properly formatted input file should look like this:

'Ramp-shaped profile'
n, nx, tf, k

5, 20, 1, 1

Initial profile

-10., 1.875

-1.09589, 1.09589

0, 0.

1.09589, -1.09589
10., -1.875

The program reads the first line to get the title. Note that the title (maximum length, 70
characters) must be surrounded by single quotes. It skips the second line, and then reads
the third to define the user specified parameters: n is the number of elements in the initial
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profile and should agree with the number of lines following the line that says Initial
profile. nx isthe number of space steps desired in the analysis. DIFFUSE will
determine a correspondingly stable number of time steps. tf is the final time, and k is the
rate constant or "diffusivity." The fourth line is skipped, and the computer reads the next n
lines as the initial, uninterpolated profile. Note that the units of space and time should be
consistent. If the profile is in meters and the final time in ka, then k should have units of
m?/ka.

A.5.1.2 Output

The output file determined by DIFFUSE based upon the above input file looks like

this:

Ramp-shaped profile

Model parameters

nx = 20
dx = 1.000000
nt = ‘ 41
dt = 0.2439024
k = 1.000000
Final time is 10.00000
lambda = 0.2439024
Crank-Nicholson nt = 11
Crank-Nicholson lambda = 0.9090909
Profiles
Initial,, Euler, Crank, True slope length
-10.00000, 1.87500, 1.87500, 1.87500, 1.87500
-9.00000, 1.78750, 1.75616, 1.75647, 1.75752
-8.00000, 1.70000, 1.63150, 1.63222, 1.63425
-7.00000, 1.61250, 1.49541, 1.49670, 1.49960
-6.00000, 1.52500, 1.34286, 1.34483, 1.34844
-5.00000, 1.43750, 1.16990, 1.17251, 1.17658
-4.00000, 1.35000, 0.97421, 0.97721, 0.98141
-3.00000, 1.26250, 0.75567, 0.75863, 0.76251
-2.00000, 1.17500, 0.51676, 0.51915, 0.52217
-1.00000, 1.00000, 0.26251, 0.26385, 0.26551
0.00000, 0.00000, 0.00000, 0.00000, 0.00000
1.00000, -1.00000, ~-0.26251, -0.26385, -0.26551
2.00000, -1.17500, -0.51676, -0.51915, -0.52217
3.00000, -1.26250, -0.75567, -0.75863, -0.76251
4.00000, -1.35000, -0.97421, -0.97721,° -0.98141
5.00000, -1.43750, -1.16990, -1.17251, -1.17658
6.00000, -1.52500, -1.34286, -1.34483, -1.34844
7.00000, -1.61250, -1.49541, -1.49670, -1.49960
8.00000, -1.70000, -1.63150, -1.63222, -1.63425
9.00000, -1.78750, -1.75616, -1.75647, -1.75752
10.00000, -1.87500, -1.87500, -1.87500, -1.87500
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The resulting output file is specially formatted to be pasted into or open by
Microsoft Excel for manipulation and plotting. To get Microsoft Excel version 4 to
recognize the commas as field separators, select Open from the File menu, and push the
"Text' button in the dialogue box. Then select comma as field separator. Then, open your

text file or push cancel and then paste.
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A.7 Program listing
PROGRAM DIFFUSE

C This program does diffusion erosion by euler, crank-
C nicholson, and true slope length methods
C The initial shape and parameters are specified in the
C input file. Constant elevation boundary and transport-limited
C conditions are assumed
C Program history:
c Developed 1991-1994 using Mathematica for the Macintosh
C Mon Aug 8 23:15:41 PDT 1994
C Finished FORTRAN Translation
(] Successful compilation on pangea (DEC5800), shiprock (Sun
C Sparc 2), and bishop (SGI Indigo 2 x1).
C Variable definitions
C nx --> Number of space steps
C dx --> Size of space increment
C nt --> Number of time steps
c dt --> Size of time increment
C tf --> Final time
C maxi --> Maximum number of nodes (1001)
c data --> Topographic profile
C initial --> Initial topographic profile
C eulerData ~-> Profile modified by euler method
C crankData --> Profile modified by Crank-Nicholson method
C eulerDSData --> Profile modified by true slope length method
C k --> Rate constant ("Diffusivity")
C lambda --> measure of stability
integer nx, nt, maxi
parameter (maxi=1001)

real data(maxi, 2), initial (maxi, 2), dt, k, dx, lambda,

+ eulerData(maxi,2), crankData(maxi,2), eulerDSData(maxi,2)

call input (nx, maxi, data, initial, dt, k, dx, tf, nt, lambda)
c Define elevation vectors

do 40 i=1,nx+1
eulerData(i,l)=data(i, 1)
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eulerData(i,2)=data(i, 2)

crankData(i,l)=data(i, 1)

crankData(i,2)=data(i, 2)

eulerDSData(i,l)=data(i, 1)

eulerDSData (i, 2)=data(i,2)
40 continue

call euler (nx, maxi, eulerData, nt, lambda)
call crank (nx, maki, crankData, k, dx, tf)
call eulerDs(nx, maxi, eulerDSdata, dt, k, dx, nt)

call output (nx, maxi, initial, eulerData,

+ crankData, eulerDSData)
END

C end main program

C Begin subroutines

Subroutine euler (nx, size, data, nt, lambda)

C Calculates new elevation vector by explicit centered
C finite difference
C i --> Time counter
C 1l --> Space counter
C size --> Long dimension of vector
C temp --> Temporary elevation vector

integer i, 1, nt, nx, size

real data(size,2), temp(1001,2), lambda
C Calculate the change in elevation nt times

do 10 1l=1,nt
C calculate the new elevations for this increment

do 20 1=2,nx
temp(i,2)=data(i,2)+lambda*

+ (data{i+l,2)-(2*data(i,2))+data(i-1,2))
20 continue ‘
C Assign new elevation vector to elevation vector

do 30 i= 2,nx '
data(i,2) = temp(i,2)

30 continue
10 continue

END
C end euler

Subroutine crank (nx, size, data, k, dx, tf)

C This subroutine determines the new elevations by using the

C Crank-Nicholson implicit scheme.
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N0

[oNeNe!

51

52

55
53

[eNeN®]

i --> Time counter
1l --> Space counter
size --> Long dimension of vector

p --> Temporary elevation vector

cnlambda --> Crank-Nicholson lambda

rhs —--> Right-hand side vector of Crank-Nicholson equation
band --> Vector for upper and lower bands of tridiagonal matrix
main --> Main band of tridiagonal matrix

integer i, nt, 1, size
real data(size, 2), dx, k, tf, cnlambda, rhs(1001),
band (1001), main{(1001), dt, p(1001)

Determine new cnlambda for greater stability of CN method
Determine a stable nt and dx. Note that the first dt is
provisional

dt (1* (dx**2)) /k

nt int(tf/dt)+1

dt = tf/nt

cnlambda = (k*dt)/{(dx**2)

print *, 'Crank-Nicholson nt =', nt
print *, 'Crank-Nicholson lambda =', cnlambda

Build bands for matrix
do 51 i=1,nx-2

band(i) = (-cnlambda)
continue

Build main band
do 52 i=1,nx-1

main(i) = 2*{(1 + cnlambda)
continue

Calculate elevation change nt times
do 53 1=1,nt
call vctr {(rhs, data, cnlambda, nx, size)
call trdiag (nx-1, band, main, band, p, rhs, size)
do 55 i=2,nx
data(i,2)=p(i-1)
continue
continue
END
end crank

Subroutine vctr (rhs, data, cnlambda, nx, size)
The subroutine vctr determines the value of the
vector rhs for the tridiagonal solution of the

matrix equation of the crank-nicholson scheme:

integer nx, size
real data(size, 2), cnlambda, rhs(size)

update first interior node
rhs (1) = 2*cnlambda*data(l,2) + 2*(l-cnlambda)*data(2,2)



App. A. Numerical aspects of diffusion erosion of topographic profiles...

+ + cnlambda*data(3, 2)

C update fully interior nodes
do 54 i=3,nx-1
rhs(i-1) = cnlambda*(data(i-1,2) + data(i+1,2)) +

+ 2* (l-cnlambda) *data(i, 2)
54 continue
C update last interior node
rhs (nx-1) = cnlambda*data(nx-1,2) +
+ 2% (1l-cnlambda) *data (nx,2) + 2*cnlambda*data (nx+1,2)
END
C end vctr

Subroutine eulerDs (nx, size, data, dt, k, dx, nt)

c Calculates new elevation vector by explicit centered
C difference, keeping track of true slope length, ds

integer i, 1, nt, nx, size
real data(size, 2), temp(1001, 2), k, dt, ds, dx

C Calculate the change in elevation nt times
do 12 1=1,nt

C calculate the new elevations for this increment
do 25 i=2,nx
ds = sqgrt(((2*dx)**2)+

+ (data(i+1,2)-data(i-1,2))**2)/2
temp(i,2)=data(i,2)+((dt*k)/(dx*ds))*
+ (data(i+1,2)-(2*data(i,2))+data(i-1,2))
25 continue
C Assign new elevation vector to elevation vector
do 35 i= 2,nx
data(i,2) = temp(i,2)
35 continue
12 continue
END
C end eulerDs

Subroutine input (nx, size, data, initial, dt, k, dx, tf, nt,
lambda)

+

It needs an input file with the following format:
'title' of maximum length, 70 characters

Note that the title must be surrounded by single quotes
number of elements in initial profile, nx, tf, k
Uninterpolated initial profile

data: xmin, HO

data: x2, H2

oNoNoNe NN NeNON®!

data: xnx, Hnx
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nnnooonoaoaoaoaonn

0

data: xmax, HF

Below is sample input file:
'Ramp-shaped profile'

n, nx, tf, k

5, 100, 1, 1

Initial profile

-10., 1.875

-1.09589, 1.09589

0, 0.

1.09589, -1.09589

10., -1.875

prof is the initial, uninterpolated profile

integer i, j, n, nx, nt, size

real data(size,2), prof(1001,2), initial(size,2), dx, k,
lambda, dt, tf

character title*70

read *, title

read *

read *, n, nx, tf, k

read *

read *, ((prof(i,j), j=1,2), i=1,n)

call interpolate (data, prof, size, n, nx, dx)

determine a stable nt and dx. Note that the first dt is
provisional

dt = (0.25*(dx**2))/k
nt = int(tf/dt)+1
dt = tf/nt

lambda = (k*dt)/(dx**2)

print *, title

print *

Print input parameters
print*, 'Model parameters'

print *, 'nx = ', nx

print *, 'dx = ', dx

print *, 'nt = ', nt

print *, 'dt = ', dt

print *, 'k ="', k

print *, 'Final time is ', tf
Print *, 'lambda = ', lambda

Determine initial profile
do 5 i=1,nx+1

initial(i,1) = data(i,l)
initial(i,2) = data(i,2)
continue
print *
END

end input
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[oNOoNONe]

NN

50

Subroutine interpolate (data, prof, size, n, nx, dx)

This subroutine takes a set of x, H points of arbitrary spacing
but sequential order, prof (i,3j), their number, n, and the desired
number of space steps, nx, and returns data (i,j) of regularly
spaced, linearly interpolated points and a new dx.

loc --> Index of profile

proflength --> Profile length

dist --> Distance from current data vector node to current prof
node

slope --> Local slope

integer loc, i, n, nx, size
real data(size, 2), prof(size, 2), proflength, dx, dist, slope

Determine dx
proflength = Abs(prof(n,1l)-prof(l,1))
dx = proflength/nx

upper end

data(l,1) = prof(1,1)
data(l,2) = prof(l,2)
interpolate

loc=2

do 50 i1=2,nx
data(i,l) = data(l,1)+(i-1)*dx
if (data(i,1l).gt.prof(loc,1l)) loc=loc+l
if (data(i,l).lt.prof(loc,1l)) then
slope=( (prof (loc-1,2)-prof(loc,2))/

+ (prof (loc-1,1)-prof(loc,1)))

dist=data(i,l)-prof{loc-1,1)
data(i,2) = dist*slope + prof(loc-1,2)
end if
if (data(i,1).eq.prof(loc,1l)) then
data(i,2)=prof(i,2)
loc=loc+1l
end 1if
continue

lower end
data(nx+1,1)
data (nx+1, 2)

prof(n,1l)
prof(n,2)

END
end interpolate

subroutine output (nx, size, initial, eulerData,
+ crankData, eulerDSData)

integer i, j, nx, size
real eulerData(size,2), crankData(size,2), eulerDSData(size,2),
+ initial(size,2), all(1001,5)
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o First, put all of the data into one array (all) so it
C will write properly

do 475 i=1,nx+1
all(i,1l) = initial(i,1)

all(i,2) = initial(i,2)
all(i,3) = eulerData(i,?2)
all(i,4) = crankData(i,2)
all(i,5) = eulerDSData(i,2)

475 continue

Some of thie funky formatting below is desinged for easy
cut and paste of output into Microsoft Excel or some
other plotting package

[oNPNS]

Print *

Print *, Profiles'

Print *, 'mmmmmmmmm e s e e
b ceseeseiemasees

Print *, ' 1Initial,, Euler, Crank,
+ True slope length'

Print *, 'mrormmmsmmmemm e de e mmmmm s S mes
+ _____________ )

write(*,1500), ({all(i,3j),3j=1,5),i=1,nx+1)

1500 format (f10.5, ',' f10.5, ',', fio0.5, ',', £10.5, ',
+ ', £10.5)

END
C end output

Subroutine trdiag (n, a, b, ¢, x, g, size)

This subroutine solves tridiagonal systems of equations
by Gauss elimination.

The problem solved is mx=g where m=tri(a,b,c)

This routine does not destroy the original matrix

and may be called a number of times without redefining the
matrix.

Modified from Ferziger, 1981.

n = number of equations to be solved

t = multiplier

oNoNoNe NN RO NP NS

integer i, j, n, size
real a({size), b(size), c(size), x(size), g(size), bb(1001),
+ t

C forward elimination
(e bb ig a scratch array needed to avoid destroying b array

do 1 i=1,n
bb(i) = b(i)
1 continue

do 2 i=2,n
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t = a(i-1)/bb(i-1)
bb(i) = bb(i) - c(i-1)*t
g(i) = g(i) - g(i-1)*t

2 continue

C back substitution
x(n) = g(n)/bb(n)
do 3 i=1,n-1
j=n-1i
x(3j) = (g(F)-c(J3)*x(3+1))/bb(3)
3 continue

END
C end trdiag
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